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ABSTRACT

A cable-strumming experiment was conducted at Castine, :
Maine in July and August of 1981. 75-foot long sections of a
1.25-inch diameter cable, and a 1.631-inch diameter pipe were
subjected to vortex induced vibration. Seven biaxial pairs
of accelerometers were placed at different locations along
the cable, and the pipe. Acceleration at these seven
positions, as well as tension, tidal current velocity, and
drag force were simultaneously recorded. Current velocities
ranged from 0 to 2.4 feet/second. A numerical double
integration technique is presented in detail and used to
obtain the transverse and in-line displacements. Modal
~identification is used to evaluate the motion in terms of the

individual natural modal coordinates of the cable. Lockin
and non-lockin examples are presented. Cross flow amplitudes
are typically twice that of the in~-line vibration. In-line

response frequencies are typically twice that of the cross
flow.
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CHAPTER 1
INTRODUCTION

- Marine risers, tension elements on TLP's, and hydrophone
cables are all examples of structures subject to
vor tex-induced vibration. The response of the cylinder
depends upon a complex interaction between the natural modes
of the vibration and the vortex-shedding process.. »

The purpose of this research was to evaluate the in-line
and cross-flow displacements of long flexible cylinders from
acceleration data obtained in field tests. Individual modal
amplitudes wére to be determined for in-line and cross-flow
response for both lock-in and non-lock-in conditions.
Experiments were performed on long flexible cylinders 75 feet
in length which were exposed to uniform curréht ranging from
0 to 2.4 feet/second. Measurements taken ingluded current,
drag, tension and biaxial acceleration at seven locations
along the test cylinders.

The angular orientations of the biaxial accelerometers
were initial unknowns which had to be resolved by evaluation
of the gravitational acceleration components recorded with
the data. Once the orientation was established the
horizontal (in-line) and vertical (cross-flow) vector
acceleration components were obtained. A numerical double
integration technique was developed to determine the vector
displacement time histories at the seven measurement
locations. The theoretical mode shapes of uniform cables,
and beams under tension, with pinned ends, are simple
sinusoids. By a least squares error minimization techhique,
it was'possiblé to evaluate the individual modal
éontributions for in-line and cross-flow motions, and for
lock-in and non-lock-in conditions. In other words, the
vector displaéement response was reduced to the separate time
histories of the natural coordinates of the individual
contributing modes. The data processing methodologies are



" described and typical results are presented. Two and one half
hour records of drag coefficient, current, and RMS
displacement were calculated and are presented.



CHAPTER 2
THE EXPERIMENT

2.1 Test Site

The site chosen for the experiment, shown in Fig. 1 was
a sandbar located at the mouth of Holbrook Cove near Castine
Maine. This was the same site used in previous experiments
in 1975 and 1976 by Vandiver, Mazel and Kan (12,18). At low
‘tide, the sandbar was exposed allowing easy access to the
- test equipment while at high tide it was covered by about 10
feet of water. The test section was oriented normal to the
direction of the current which varied from 0 to 2.4 ft/s over
~the tidal cycle with only small spatial differences over the
section length at any given moment.

The data taking station for the experiment was the R/V
Edgerton chartered from the MIT Sea Grant Program. The
Edgertoh-was moored for the duration of the experiment
approximately 300 ft. from the sandbar and connected to the
instruments on the sandbar by umbilicals. '

_ Prior to the data taking part of the experiment, several
days were needed to prepare the site. A foundation for the
experiment was needed to anchor the supports that were to
hold the ends of the test cylinders. To accomplish this, six
4.5 inch diameter steel pipes were water jetted into the
sandbar utilizing the fire pump aboard the Edgerton. These
six pipes were made of two, five foot sections joined by
couplings so that the overall length of each was 10.0 feet.

In addition, one 2.0 inch steel pipe, 6 feet 1bng, was jetted
into the sandbar to be used as a current meter mount. Fig. 2

shows a schematic diagram of the experiment test section.
2.2 Drag Measuring System

A load cell mounted at one end of the test cylinder
measured the horizontal shear force on one end of the test
cylinder. The cylinder and its supports were symmetric, and
'thefefbre the measured force was one half the total drag
bforce on the cylinder. Mean drag force was measured. The
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mechanical details of the drag measuring mechanism way be
found in the thesis by J.McGlothlin. The load cell was a
Sensotec Model 41, packaged for underwater use. The signal
from the load cell traveled through wires in the test
cylinders and through the umbilical to the Edgerton where it
was conditioned and recorded. |
2.3 Current Measuring System

The current was measured by a Neil Brown Instrument
Systems DRCM -2 Acoustic Current Meter located 12.5 feet from
the west end of the test cylinder and 2 feet upstream. It
was set so that it determined the current at the level of the
test cylinders. Signals from the current meter traveled
through umbilicals to the Edgerton where they were monitored
and recorded. In addition, a current meter traverse was
performed using an Endeco current meter to determine the
spatial differences in current along the test section. The
current was found to be spatially uniform to within + or -

3.0% from end to end for all current speeds above 0.5 feet
per second. “

2 4 Tension Measuring System

The tension measurlng and adjusting system was located
at the east end of the experiment test section. Extensions
were made to the two inner water jetted posts at this end.

As shown in the diagram, a 5-foot extension was made to the
center post and a 3-foot extension was made to the inner most
post. What made this 3-foot extension different from the
rest was that its attachment to the jetted pipe at the
mudline was a pin connection as compared to the standard pipe'
couplings used on the other extensions. ‘This pin connection
gave it the ability to pivot in the plane of the posts. Onto
this pivoting post, a hydraulic cylinder was mounted,
horizontally, 2.5 feet above the mudline. The test cylinder
was connected at one end to this hydraulic cylindér and at
the other end to the drag measuring device. The test
cylinder was attached 2.5 feet above the mudline, =2

sufficient distance to avoid any boundary ‘layer effects



‘caused by the sandbar. A cable ran from the back of the
hydraulic.éylinder to a Sensotec Model RM In-Line load cell
which was anchored at the other end to the center post. 1In
this way, the force on the test cylinder was the same force
seen by the load cell minus a small amount due to friction in
the pin. The output from the tension load cell passed
through the umbilicals to the Edgerton where it was
monitored. Hydraulic hose ran from a hand operated pump on
the Edgerton to the hydraulic cylinder so that the tension
could be changed as desired. This was not a constant tension
system. Stiction in the hydraulic cylinder kept the distance
between the attachment points of the test cylinder a constant
unless intentionally changed. Therefore tension varied
slowly with current speed and mean drag force.
2.5 Test Cylinders '

2.5.1 Cable

A 75 foot long instrumented cable was developed
specifically for the experiments that were performed in the
summer of 1981. The outer sheath for this cable was a single
piece of clear flexible PVC tubing, which was 1 1/4 inches in
outside diameter by 1.0 inch in inside diameter. Three 1/8
inch diameter stainless steel cables ran through the tubihg
and served as the tension carrying members. A cylindrical
piecé of 1/2 inch diameter neoprene rubber was used to keep
the stainless steel cables spaced 120 degrees apart. The
neoprene rubber spacer was continuous along the length except

at seven positions where biaxial pairs of accelerometers were
placed. Starting at the east end these positions were at
L/8, L/6, L/4, 2L/5, L/2, 5L/8, and 3L/4. These
accelerometers were used to measure the response of the
cable. The accelerometers were Sundstrand Mini-Pal Model
2180 Servo Accelerometers which are sensitive to the
direction of gravity. Each is 1/2 inch in diameter by 1.5
inches long. The biaxial pairing of these accelerometers
made it possible to determine their orientation and hence
extract réal vertical and horizontal accelerations of the



cable at the seven locations. Three bundles of ten wires

_ each ran along the sides of the neoprene spacer to provide
power and signal connecticns to the accelerometers and to the
drag measuring system. An Emerson and Cuming flexible epoxy‘
was used to fill the voids in the cable and make it water
tight. The weight per unit length of this composite cable
was .7704 1lbs/ft in air. |

2.5.2 Steel Tubing ' _

In a second set of experiments, the composite cable'was
placed inside a 1.631 inch O.D by 1.493 inch I.D. steel |
tube. The tubing was made of four equal 1ength.sections
that were joined together. At the internal joints steel
nipples were welded to each tube section and stainless steel
threaded couplings were used to join them. The tubing was
connected to the hydraulic cylinder and to the drag cell
mechanism by custom made universal joints to provide pinned

end conditions. These special end connectors also kept the
cable inside the tubing under a slight tension, and neoprene
spacers at intervals of 18 inches between the cable and
being inhibited any relative motion betwwen the t*». The
remaining cavity was allowed to fill with water. The weight
per unit length of the steel tubing with the cable inside'and
the voids flooded with water was 2.2344 lbs/ft., in air.
2.5.3 Lumped Masses

In another set of experiments, lumped masses were
fastened to the bare cable and their effects studied. The
lumped masses were PVC cylinders 12.0 inches long and 3.5
inches in diameter. A 1.25 inch hole was drilled through the
center of each lump so that the cable could pass through. In
addition, four .625 inch holes were drilled symmetrically
around this 1.25 inch center hole so that copper tubes filled
with lead could be inserted to change the mass of the lumps.
In the field, it was difficult to force the cable through the
holes drilled in the PVC so each mass was cut in half along
the length of its axis. The masses were placed or. the cable
in halves and held together by hose clamps. Different tests



®

were run by varying the number and location of lumps and by
changing the mass of the lumps. The results of these tests
will not be reported on in this paper, but may be found in
references (16) and (17).

2.5.4 Faired Cable

Finally, 11.6 x 1/16 inch diameter Endeco plastic

stranded fairings were applied to the cable to evaluate their
effectiveness as strumming suppression devices.




CHAPTER 3

DATA REDUCTION
3.1 Vector Rotation of Acceleration Time Histories

The orientation of the biaxial accelerometers is
initially unknown. Because the cross-flow (vertical) and
in-line (horizontal) vibration are of different character,‘it
was useful to separate the measured acceleration into
vertical and horizontal components. This required
‘determining accelerometer orientation angle, which then
permitted recovery of the vertical and horizontal components
by vector rntation of the time histories. The accelerometers
used were sensitive to gravity and gave a DC offset to the
recorded signal. Fig 3 defines x'(t) and y'(t) as the actual
orientation of the accelerometer axes. (8 is the angle of
rotation necessary to describe the motion in the desired
coordinate system. The x' and y' measurements have DC
offsets (DCx and DCy) proportional to the component of
gravity which was measured in that direction. From these DC
offsets the angle~@,may be obtained.

4 |DC
_ -1 X
@ = tan DCy + km (3.1.1)
where K depends on the sign of DCx and DCy. After A has been
found, the real vertical and horizontal accelerations x(t),

y(t) can be found by the vector rotation:

X(t) = X (t)cos8 - Y (t)siné (3.1.2a)

i

i

Y (t) X‘(t)sine + Y'(t)cose (3.1.2b)
Figures 4 to 7 show sample acceleration time histories before
and after rotation. Note that the real vertical acceleration
has a DC offset equal to one g or 386.017 in/sec**2,
3.2 Integrator

In a continuous time description, Equation (3.2.1)
represents the integration of acceleration a(t) tc get
velocity v(t)

10
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V() = {t a(t )dt" (3.2.1)

A discrete time approximation for v(t) can be calculated by a
linear constant coefficient difference equation.

m ,
V[n] = Vin-r]+T } blkla[n-k] (3.2.2)
' k=0

‘where r is the order of the filter and the b(k) are the
filter coefficients, m is the degree of the filter, and T is
the sampling period.

Generally, the properties of digital integrators have
been developed in the time domain by fitting the data points
with a smoothed curve. The time domain interpretation as
presentéd in equation 3.2.2 has an equivalent frequency
domain formulation. The Z-Transform of equation (2.2.2)
leads to the system function H(z):
m
J b(k)z™¥
k=0

1-27%

H(Z) = T

(3.2.3)

Evaluating H(z) on the unit circle of the z-plane yields the
frequency response function H(w). If the numerator of H(z)
is a mirror image polynomial then forward and backward
integration in time will yield the same result. This leads
tos: . . [m/2]

m-r ) ~b(k)cos(§-— k)w for m odd
. - m -i("'—-‘)w k=0
Alw) = te 702 ‘ i sin rw/2 . (3.2.3a)
m/2-1
-1 (B % b(%) + 20 b(k)cos(§-~ K)w TOr m even
H(w) = Te 2 —— (3.2.3Db)
i sin rw/2

The frequency response function for an ideal integrator is:

_ T
HI(W) = Tw (3.2.4)

Recognizing that, if x(n) and X(w) are a Fourier transform

17



pair, then x(n-m) and exp(-iwm)X(w) are also a Fourier
transform pair. Any system function that can be written as:

H(iw) = |H(iw)| X% (3.2.5)

where k is a constant, is a linear phase shift system. Let
x(n) be the input to H(w) in eguation 3.2.3 and Hi(w) in
equation 3.2.4 with y(n) and y'(n) being the respective
outputs. Rewriting H(w) and Hi(w) as:

H(iw) = |H(iw)| S | (3.2.6)

. . 1
Hy (iw) = IHI(lw)l T | - (3.2.7)
Then the transfer function between y(n) and y'(n) 1is,

tiw . ﬁ‘”{&,) exp (-iT5w) (3.2.8)
Y . (iw) I
There is a linear phase shift between the ideal integrator
result and this integrator result. A comparision of the
magnitudes of (3.2.3) and (3.2.4) can be used to evamine the
accuracy of the integrator. An error measurement E(w) is
defined as: '

E(w) = 20 log E(Y;)[ = 20 log w|H(w) | (3.2.9)

I

Fig. 9 shows E(w) for a variety of integrators. For the
Castine experiment, the sampling frequency was 30 Hz, and the
typical frequency range for the cable response was from 2 to
7 Hz. This correqunds to dimensionless frequencies in the
figure from 0.13 T to 0.47 T where T corresponds to half
the sampling frequency. Fig. 9 shows that the error for
Trapezoidal rule integration in this range is from 2% to 20%,
and 0.1% to 5% for Simpson's rule. The errors are larger at
the higher frequencies. Many maximally flat integrators have
been presented in the literature (6). Fig. 9 shous two
examples for filters of degree m=2 and 4. The error for m=4

18
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is reduced to a maximum of 0.5% at the highest frequency of
interest.

Schuessler and Ibler (13) pointed out two basic mistakes
in the application of this integration formula. First, the

filter coefficients b(k) should be time-varying instead of
constant according to the equation:

b(k) u(n-r+k) | k=0,1,.,.,.,(r-1)
b'(k,n) = . ‘
b(k) k=r,r+l,.,.,m
(3.2.10)

where b(k) are filter weights given in table 3.1 and 3.2 and
u(k) is a unit step function. The reason is that according
to the continuous integration equation (3.2.1) v(0)=0 must
hold. But by using the digital integrator (3.2.2),
v(0)=b(0)a(0) rather than zero. If (3.2.9) is used,
v(0)=b'(0,0)a(0)=b(0)u(-r)a(0)=0 which yields the correct
result. Second, the Newton-Codes formulas are, in fact}
valid only for n=i*r with i=0,1." ' r SO Schuessler and‘
Ibler proposed that the sampling frequency at input and
oﬁtput should be different. This is accomplished Ly applying
‘an interpolator to the input sequences before the integrator
is applied. The combination of the interpolator and
integrator into one system led them to propose a new

integration formula.
T 2L-1
V(n) = V(n-1) + 3 ] b'(k,n) a(n-k) (3.2.11)
k=0

where L is the length of the interpolator and

, b(k) u(n-L+k) 0<k<L~-1
b!(n,k) = : -

b (k) L<k<2L-1

(3.2.12)
the b(k) are the new filter coefficients given in table 3.3
This integrator was used in the analysis of the Castine data.
3.3 Low Frequency Noise Expansibn ‘

The cable velocity. v(t), and displacement, a(t), can be
obtained from the acceleration, a(t), by numerical

20



integration. 1If v(O) is the initial velocity at t=0, the
time of the start of data collection, then
vit) = v(0) + ¥ a(t')at’ (3.3.1)
. [+]

The initial velocity v(0) is unknown. However, a bounded
displacement d(t) is desired. This requires that there be no

‘linear trend or DC component in the velocity v(t) The value

v(0) can be arbitrarily set to zero. Following the
integration of a(t) a atraight line is fitted to v(t) The
offset and trends which are found may be then removed from
v(t) Equation 3,3.1 can be rewritten as:

v(t) = a(t) * u(t) | (3.3.2)

‘where u(t) is the unit step function and * denotes a

convolution integral. Taking the Fourier transform of
Equation 3.3.2 yields:

V) = AW 16 (W) + 71 = A(0)n + A0 (3.3.3)

-]

S a(t)dt (3.3.4)

- OO

A(0)

it

The term A(0) can be removed by fitting a straight line to
a(t) to remove any linear trend or DC component in

~acceleration a(t). The transfer function between a(t) and

v(t) is:

viw) _ 1
= ATw) = Tu (3.3.5)

The same procedure can be applied to integrate v(t) to get

d(t) except that the assumption for the zero mean d(t) is no

longer true. But, we are interested only in the dynamic
response of the cable, so d(0) can be set arbitrarily.
Integration has the characteristics of a low-pass filter with
a gain which goes to infinity as the frequency goes to zero.
This leads to the undesirable expansion of low frequency

~noise in the integration process. Fig. 7 shows a sample of

21
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*

an acceleration time history. Fig. 8 is the FFT of this
acceleration. A negligible component of low frequency noise
is shown. Figures 10 and 11 show that after integration, low
frequency noise dominates the velocity signal.

This reveals that low frequency noise expansion leads to
unacceptable integration errors. To correct the problem, a
high-pass filter is required.

3.4 High-Pass Filter

A digital filter is a linear time-shift-invariant system

represented by a linear constant coefficient difference
equation (LCCDE):

N M
ylnl =} a_ yln-k]l + ] b, x[n-k] (3.4.1)
k=1 k=0
The corresponding system function is given by
M
} b z7K
k=0 k .
H(Z) = N : g (3.4.2)
1- ¥ akZ-k'
k=1

where x(n) is the input signal, y(n) is the output signal,
and ak and bk are filter coefficients. For a stable causal
filter all the poles of this‘system function must lie inside
the unit circle. There are three basic steps in the desigh |
of a digital filter: (1) The specification of the desired
filter properties; (2) the determination of the transfer
function possessing those properties and (3) the |
implementation of the filter.

For an ideal low-pass (or high-pass) filter, the
trﬁpsfer functiqn magnitude contains a sharp discontinuity
at the cut-off frequencies and the required filter order is
infinite. Thus a transition band at the cut-off frequencies
and a tolérance error in pass-band and stop-band are provided
to approximate the desired filter. 1In step (1), the filter
specifiéation must include these tolerance magnitudes and the
transition'bandwidth. Fig. 12 shows these specifications for
a low-pass filter. ‘

If the system function H(z) in (3.4.2) contains poles
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solely at the origin, the filter is called a finite impulse
response (FIR) filter. Otherwise it is an infinite impulse
response (IIR) filter. |

A FIR filter is always stable and a linear phase_is ;
always achievable by choosing a symmetric impdlse response ;
function h(n). For the same desired filter Characteristics,
the FIR filter must be of a much higher Crdet than the
comparable IIR fllter, and therefore the FIR fllter may
require excessive computer time.

The design of an IIR filter involves the transformatlon
of an analog filter into a digital filter. There are several
analog low-pass filters available, including the Butterworth,
Chebyshev, and elliptic filters. By using the proper
transformation between the analog and digital 5ystems, an
~analog low-pass filter can be designed for which the |
correspondlng dlgltal filter meets the desired spec1f1cat10n.

There are two requirements for the transformation of an
analog system into a digital system. First, the imaginary
axis of the s-plane must map onto the unit circle of the

z-plane. This means that the properties of the frcquency:
response function have been preserved. The second
requirement is that a stable analog filter must be
transformed into a stable digital filter, i.e. all the poles
in the left half s-plane must map into the 1n51de of the unit
circle in the z-plane.

The Bilinear traneformatlon (10) for mapplng between the

s-plane and the z-plane is glven as:
-1 : )
_ 2 1-2 |
S = T . +l (3.4.3)‘
The unit c1rcle in the z-plane is mapped accordlng to:

217V 2 w . 2 w . S
S—-T. .—Ttan2—0+1Q+Q-Ttan-é- (3.4.4)

Thus, the unit circle is mapped onto the imaginary axis of
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the s-plane. Also, the left half of the s-plane is mapped

into the inside of the unit circle of the z-plane. Fig. 13

demonstrates the transformation. The procedure to design an

IIR low-pass filter involves the following four steps:

(1): Specifying the desired filter properties.

(2): Mapping those specifications into an analog filter using
the Bilinear transformation. ,

(3): Choosing an analog filter and determining those
parameters which meet the analog filter specification
requirements.

(4) : Mapping the analog filter to a digital filter using the
bilinear transformation.

A high-pass filter éan be designed by applying an
appropriate frequency transformation from a low-pass filter.
Let H(zl) and H(z) be the desired system functions of the
high-pass filter and corresponding low-pass filter. One

method of transformation is by using the following relation:

ok _ (3.4.5)
l+aZi

Fig. 14 shows the relation between H(wl) and H(w) The

‘ design procedure for a high-pass filter involves the

following steps:

('): Specification of the desired high-pass filter H(wl)

("): Transfdrmation to the equivalent low-pass filter H(w)
using equation (3.4.5) ‘

(3): Applicationvof the steps for the design of a low-pass
filter H(w) |

(4) : Transformation to the high-pass filter H(wl) by using
equation (".4.5) . ' o
An IIR elliptic high-pass filter of the»smallest

possibie ofder is used to prevent low frequency noise’

expansion in the double integration procedure. A computer

program for the design of an IIR elliptic filter has'been

published by Gray and Markel (5). The input data to this

program inciUdes the tolerance error in pass-band and
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stop-band, the stop-band and pass-band edge frequencies and
the filter order N which may be estimated from design charts
(10) . The output gives the position of zeros and poles for
the desired filter system function H(z).

A cascade form of implementation is used by writing H(z)
as a product of second-order factors as:

N/2

H(Z) = @ (aok + alkz"l +oa, Z-2) (3.4.6)
k=1 _

This separates the whole system into a series of several

'second—order systems. The output of one system becomes the
input of the next. In general, this form of implementation
is less sensitive to the parameter quantization effect.

An IIR recursive filter always has nonlinear phase
characteristics. For this research, accurate phase
information is required in order to conduct the modal
analysis. The following steps (') were used to eliminate
the nonlinear phase effects. Let x(n) and y(n) be the
sequences before ‘and after the filter respectively. R is the
time reverse aevice, and H(z) is the filter system function.
These can be used in the following sequence ' |

_ r[n] S[n]} tn]
x[n]-==> [H(Z)]--->[R]--=+ [H(Z)]-==+ [R]=---+ y[n]
R(w) = X(w) H(w)
S(w) = R{(-w)
T(w) = S(w) H(w) .
Y(w) = T (~-w) (3.4.7)

Those relations imply the following:

Y(w) = X(W)HWH(-w) = X(w)|H(w) |2  (3.4.8)

The new sYstem function between x(n) and Y(n) is the square

of the magnitude of the original filter's system function and
has zero phase shift.

3.5 Double Integration Procedures
- A summary of the procedure for double integrating a
digital acceleration signal follows. The procedure contains

29



the following eleven steps:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.
Step 7.

Step 8.

Step 9.
Step 10.

Step 11.

Determine the rotation angle of the_accelerometets
and use them to obtain the real vertical and
horizontal accelerations. | |

Using the method of least squares, fit a straight
line to the block of data to be integrated. Use
this to remove DC offsets and trends from the data
prior to integration. The block length is 1024
data points in the results presénted here.

Obtain the acceleration spectrum and divide- it by
l/w**4 to obtain the theoretical displacement ,
spectrum, Use these two spectra as a subjéctive'
aid in the determination of the high-pass cutoff
frequency necessary for the prevention of
low-frequency noise expansion.

High-pass filter the acceleration signal using an
IIR elliptic filter to remove any low frequency -
noise. '
Integrate the acceleration signal using the
Schuessler-Ibler integrator to obtain velgcity.
Least square fit a straight line to the velocity
time history to remove the DC offset and linear
trend.

High~-pass filter the velocity signal using the IIR
elliptic filter to remove low-frequency components
that were expanded in Step 5.

Integrate the velocity signal using the
Schuessler-Ibler integrator to obtain displacement.
Least squares fit a straight line to the
displacement time history to remove offsets and
linear trend.

High-pass filter the displacement signal using the
IIR elliptic filter to remove low-frequency
components that were expanded in Step 8.

Plot summary data such as root-mean-squares,

spectra, time series and two dimensional cylinder
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motion time series.
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- CHAPTER 4
RESPONSE OF CYLINDERS

In the preceeding chapter, the data analysis process was
presented, including vector rotation, filter design, and
double integration procedures. In this chapter, typical
analysis results of cylinder motions at lock-in and
ncn-lock-in are presented. Compressed 2 1/2-hour records of

drag coefficient, current speed, and RMS displacement
response are also presented.
4.1 Cylinder Motion at Lock-in

Lock-in occurs when the vortex shedding frequency falls
within a few percent of a natural frequency of the cylinder.
The vortex shedding process is synchronized with the
cylinder's motion, and a stable sinuisoidal transverse
- displacememt of nearly constant amplitude is observed. Fig.
15 shows an example of cross flow displacement of the pipe at
L/4 during lock-in with the third mode. Fig. 16 is the
corresponding FFT. A single dominant peak is obsegved. A
narrow-band lift force is associated with this resrnnse.

In the horizontal direction, the motion is quite
different from the vertical response at lock-in. A periodic
but nonsinusoidal displacement is observed in the horizontal
direction as shown in Fig. 17. Fig. 18 presents the
magnitude of the FFT. The dominant frequency in horizontal
direction is exactly double that in the vertical direction.
The reason for this is that during the shedding of two
vortices, one from each side off the cylinder, the lift force
completes one cycle, but in the horizontal direction the drag
force variation completes two cycles, one for each vortex
shed. The result is that the dominant horizontal response
frequency is exactly twice that of the vertical. The FFT in
Fig. 18 reveals that the horizontal vibration also includes a
small response component at the cross-flow vibration response
frequency. This secondary frequency component acc-unts for
the beat phenomena in Fig. 17. At lock-in the vertical and
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horizontal excitations and responses are highly correlated.
By double integration of both horizontal and vertical
accelerations to obtain displacement time histories, it is
possible to plot the trajectary of the motion of a point on
the cylinder. Fig. 19 shows the motion at L/4 projected on
to a plane which is normal to the cylinder axis. 1In this
case the vertical motion was lock-in at third-mode and the
horizontal motion was at twice the frequency of the vertical
motion and was dominated by response in the fifth-mode. A
small amount of third-mode motion also appears in the
horizontal response. Without it there would be nearly
perfect figures of eight.

At this point in the analysis, one does not generally
know for certain which natural modes of vibration are
'responding. It will in fact be shown that the horizontal
response which results from cross-flow lock-in does not
always excite'a resonant natural frequency. Mode shape
identification is required to isolate individual contributing
vibration modes. This is discussed in Chapter 5.

4.2 Cylinder Motion at Non-lock-in

When the vortex shedding frequency is outside of the
lock-in range, non-lock-in vibration results. The response
is characterized by fluctuations of amplitude and frequency
in both vertical and horizontal directions. The 1lift force
correlation length along the cylinder becomes much shorter
than that at lock-in. Figs. 20 through 23 show typical
displacement time histories and their FFTs in the cross-flow
and in-line directions at L/8. Wide band lift and drag
forces are implied. Figure 24 shows the correspbnding
displacement trajectories at L/8. For the data presented in
Figs. 20 and 22, the response is due to many different modes.
As will be shown in Chapter 5, the horizontal response peaks
in Fig. 23 are due to the fourth, fifth, sixth and seventh
modes.

4.3 Current, Drag Coefficient and RMS Displacement
The RMS data for in-line and transverse displacements
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for complete 2 l/2-hour data acquisition cycles were
calculated for the pipe, bare cable, faired cable and a cable
with 1umped masses. The RMS data were calculated by a moving
average whose window was 8.53 seconds in length. The
equation used was: ' '

N/‘ ‘ |
RMS = .\/hl] 3 x%[n] (4.3.1)
n=1

where N is 256 points and represents a time window of 8.53
seconds at a sampling rate of 30 HZ. These results are
presented in Figs. 25 to 28, along with linear moving average
values of drzg coefficient and current speed. The
displacement data are taken from location 1/6 L for the pipe
and the bare cable, from location 3/4 L for the cable with
lumps and from location 2/5 L for the faired cable. These
are raw RMS displacements at the specified location and have
not been corrected for mode shape. Over the 2 1/2-hour test,
some periods correspond to lock-in responses, and others to

non-lock-in responses. As current speed falls within a
lock-in range, a substantial increase of vertical e¢~d/or
horizontal RMS displacement is observed. A corresponding
plateau in the drag coefficient is also observed. A more
complete analysis of the drag coefficient data is presented
in the thesis by McGlothlin (8). 1In that reference an
analysis of the errors in the drag coefficient calculation is
presented. A note of caution is appropriate here, the drag
~coefficient data is least accurate at the very low-flow
speeds near the end of each test run. The drag coefficient
calculation requires division of drag force by velocity
squared. At low spéeds these are both small numbers. At one
foot/second the error is approximately +15% dropping to + 10%
at 2.5 feet/sec. The high spike in the beginning of the drag
coefficient record in Figure 25 is due to a piece of seaweed
on the cable and should be disregarded.
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CHAPTER 5
MODAL IDENTIFICATION

5.1 Modal Analysis

The response of a cylinder under external load can be
described conveniently by using modal analysis. The method
is intended to express the response as a superposition of the
system's eigenfunctions multiplied by their corresponding
time-dependent natural coordinates. As an illustration of
this method, consider a uniform string under tensile load
with pinned end boundary conditions. The equation of motion
for'this boundary value problem is:

Ty" (X,£) - REOY(X,E) + £,8) = mG)FXE)  (5.1.1)

The response y(x,t) may be expressed as a superposition of
normal mode responses.

Y(X,t) = § Y (X)P_(£) (5.1.2)
’ r=1
where Yr(x) is the normalized mode shape and has the

following orthogonality property.

{gm(x) Y x)Y_(x) dx = 8 o (5.1.3)

Substitution of (5.1.2) into (5.1.1) multiplication by Ys(x),
and integration from x=0 to L leads to:

i;r(t) + f’r(t)f"a(x)yr (x)¥_(x)ax + wrzPr(t) = N_(t) (5.1'.4)

If R(x) is pfoportional to m(x), orthogonality of normal
modes leads to a set of uncoupled single degree of freedom

oscillation equations in terms of the natural coordinates
Pr(t).

For R(x) = C m(x) (5.1.5)
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2

P(t) + B () +w ? P (t) =N () (5.1.6)

where Nr(t) the modal force defined as:

N_(t) = ££Yr(x) £ (x,t)dx (5.1.7)

In‘teality, the damping may not be governed by equation
5.1.5. However, for lightly damped well separated modes, the
uncoupled assumption yields good results. Such is the case
here. By an analogous derivation, the uncoupled normal mode
equations may be derived for a beam under tension, with
pinned end conditions. For a uniform beam the mode shapes
are sinusoids as they are for a uniform string. By using
modal analysis, the continuous system is reduced to many
single degree of freedom systems. In the next section we
will estimate the natural coordinate time histories, Pr(t),
from measured responses at the accelerometer locations:
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5.2 Estimation of Natural Coordinates

In the preceding section, the response of the cylinder
was expressed in terms of a superposition of mode shapes

Y, (x) multiplied by the natural coordinates P.(t):

vX,t) = Z

r-lPr(t) Yr(x) (5.2.1)

In this experiment, the response was measured at seven
positions. They are at 1/8L, l/6L,1/4L,2/5L,1/2L,5/8L,3/4L.
In this‘study a least sguares method was used to estimate the
natural coordinates in terms of the measured responses at
these seven positions. For any test case the response is
dominated by a finite number of modes usually 2 to 6 in
number. A first guess at the responding modes may be
obtained by inspection of the response spectrum at’any one
location. By summing the normal mode responses over the
apparent participating modes, the following equations are
obtained, where the range M~ N covers all of the participating
modes. The mode shapes can be calculated theoretically. For
the pin-supported uniform cylinder, the mode shapes are given
by

Yr(x)=sin(rwx/L)

At time t=to, the response of position x=X4 can be expressed

as:

N
Y(Xj,to) = izm Pi(to)Yi(Xj) + E(Xj) (5.2.2)

where E(Xj) is the noise term.
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Rewriting (5.2.2) in matrix form:

{y} = [¥] {p} + {E}

(5.2.3)

where y is the vector of the measured response

Y.. is the mode shape matrix

1]

Pi ‘is the vector of the natural coordinate

E. 1is the vector of noise (or error )

J ;
i=m,N j=1,7

The sum of error squares ee is given by

ee

<B> (E} = {y} - [(¥1{p1} T {{y}-[¥1{P}}

v1Tyr- 23T 1%y + 2T IyI (e}

(5.2.4)

The vector of natural coordinates Pi is to be'determiﬁed‘such

that the error squared term is minimized.

minfee] = min[{E}T{E}]

Let

‘and solve for P(t).

-1

{P} = [[YIT[Y]]

li

[Y]_l{y}

or

{p}

1

[Tl {y}

where [T'] is the transfer matrix:
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1 T

[(T] = [(Y1T[Y)1~t1y) (5.2.8)

Equation (5.2.7), decomposes the measured response at
the seven positions into the natural coordinates provided the
mode shapes are known and the guess of Ehe responding modes
is initially corréct. Figure 22 showed an example of the
‘horizontal pipe'vibration displacement at position L/8. It
is clearithat several‘modes were excited. 1In the
displacement spectium, there are several peaks, each
corresponding to one particular mode to be identified. Using
the method discussed above, the natural coordinate time
histories were obtained for the 4th, 5th, 6th and 7th modes
corresponding to each peak in the displacement spectrum,
shown in Fig. 23. These natural coordinate time histories
are shown in Fig 29. The FFTvof fourth- and fifth-mode
hatural coo;dinates are shown in Figs. 30 and 31. Each
natural coordinate time history represents the antinode
displacement for that mode. Their sum does not equal the
displaéement portrayed in Fig. 22 because it is the motion at.
a specific'poinﬁ on the cable.

5.3 Response Mode of In-line Motion at Lock=-in

In Chapter 4 it was stated that at lock-in the in-line
response is at twice the frequency of the cioss—flow. The |
question arises, what mode responds in the in-line direction.
These modal identification techniques have been used to

provide the answer, with some very surprising results. One
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such interesting case as described below.

For a taut cable,all of the natural frequencies'are‘
integer multiples of the lowest. Therefore it is reasonable
"to expect that the fluctuatingvdrag forces will excite an
in-line mode whose natural frequency is twice that of the
mode which is responsible for the cross-flow lock-in. As
will be shown, this is often not the case. Figures 32.
through 35 are the displacements and FFT's of the cable.in
the vertical and horizontal directions at L/8. The
cross-flow motion is at the'sécond—mode natural frequency of
the cable, and the in-line motion is at the fourth-mode
natural freQuenéy. Least squares modal identifiéation was
carried out‘in both directions and the resulting natural
coordinates revealed that the vertical vibration was in the
second-mode shape, while the hqrizontal vibration was in the
third-mode shape instead of the fourth-mode as had been
expected. The frequency of this third mode motion was not
the natural frequency of the third mode but was in fact equal
to the natural frequency of the fourth mode. The response
was not resonant, but inertia controlled response of the
third mode. 'Why was there no resonant response in the fourth
mode? A close look at the fluctuating drag forces provides
the eXplanation. For all pin-ended, uniform cylihders in a
‘uniform flow, lock-in with cross—flow vibration modes -
'generates'flugtuating drag forces which are symmetrically
distributed about the center of the cylinder. The resulting

modal exciting forces are given by equation 5.1.7. If a mode
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shape is asymmetric with reépect to the center of the
cylinder, this integral and hence the modal force are zero.
If the mode shape is a symmetric function with respect to the
center, the integral and resulting modal force are non-zero.
For cables and pipes‘under tension with pinned ends, the
eéen—nﬁmbered modes are asymmetric and, hence, cannot be
excited. The odd-numbered modes are symmetric with respect
to the center and may be excited. 1In this particular case,
even though the excitation was near the natural frequency of
the fourth in-line mode, the modal force of the fourth mode
was zero. The observed response was principally in the third
mode. Figure 36 shows the natural coordinates of different
modal participations in displacement in the horizontal
direction. |

5.4 RMS Response in the Natural Coordinates During

Non-lock—-in

Lock-in responses can be described by periodic
deterministic models; Non-lock-in has a much more random
character. At constant current speed and non-lock-in |
conditions, the participation of the contributing modes
varies with time. An example of this spanning a very short
period of time was(presented in FPig. 29, in the section on
modal coordinate identification. It is enlightening to study
non-lock—-in response oh a longer time scale. A 448-second
record of non-lock-in pipe response was analyzed and the
natural coordinate contributions were separated by the

methods described previously. Moving average RMS natural
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coordinate responses were calculated. These are plotted in
Figs. 37 and 38. These responses.reflect the RMS values of
the individual modal anti-ncde responses. The currenf and
drag coefficient for the same time interval is shown in Fig
39. The total response stays approximately constant while
the individual modal cdntributions vary over wide ranges. As

one mode recedes, another appears to take its place.
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data

ii.

CHAPTER 6

CONCLUSION
The following conclusicns may be made based on the teét
presented:
At lock-in, the transverse motion is characterized.by
single—mOGe response. The in-line motion may have two
modes: the dominant one has a frequency twice’that of
the transverse frequenéy and need not be the resonant

response of any particular mode, the smaller in-line

response component is at the frequency of the cross flow

vibration and represents a small amount of resonant
in-line vibration which is driven by unknown coupling
mechanisms to the cross flow vibrations. Motion time
histories at lock-in are deterministic. The phase
between the in-~line and cross-flow components
occasionally results in figure 8 patterns (as in Fig.
19). Many other repeating patterns have béen observed,
depending on the position on the cable and the principal
responding mode. The amplitude of transverse response
is about twice that of the in-line motion. A narrow
band periodic lift force is implied.

At lock-in, the in-line response is at twice the
frequency of the transverse motion. The résponding
in-line mode shapes are symmetric with féspect to the
center of the cylinder. Asymmetric modes are excited

very little due to the symmetric distribution of the

'drag exciting forces.
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iii. At non-lock-in, several modes respond in both in-line

iv.

and transverse directions, and the center freguency of
the in-line motion is higher than that of the
transverse. Wide-band lift and drag forces are implied.
At non-lock-in ,vibration energy can transfer from one
mode to another mode without any significant change in
current speed as shown in Fig. 29,

Maximun drag coefficient occurs at lock-in, and is about
3.0 for the pipe, and 3.3 for the bare cable as shown in
the 2 1/2-hour RMS data. Maximum RMS transverse and
in-line displacements also occur at lock-in. However,

peak responses are usually higher in the non-lock-in

motion.
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APPENDIX 1
CASE STUDY

A case study for double 1ntegrat1ng an acceleration time

series is described here.

(1)

(2)

(3)

(4)

(3)

Fig. A.l shows the acceleration time histories to be
double integrated.
The first step is to obtain the theoretical FFT of
diaplacement and then determine the stop-band and
pass-~band edge frequencies Fig. A.2 shows the
theoretical FFT of displacement, from which we have:
 Ws = 1.7 Hz

Wp = 2.0 Hz
Determine the pass-band and stop-band ripple tolerance
Ps and Pp. A typical value for Ps and Pp in the data
processing presented here are:

Ps=0.01

Pp=0.01
Determine the order of the‘filter N from design charts
(10). For this case study:

N=8

Calculate the positions of poles and zeros and the
cascade form filter coefficients from the computer
program IIR. The following parameters are obtained for
the high-pass filter.
pole locations:
0.905654 + i 0.397566

0.862657 + i 0.407297
0.739515 + i 0.425226
0.419697 + i 0.286726

zero locations:

0.938481 + i 0.345329
0.948841 + i 0.315753
0.971191 + i 0.924658
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(6)

Carry out all eleven steps described in section 3.5 in
the computer program LLITG, and the final displacement
are obtained as shown in Fig. A.3 and Fig. A.4.

The programs IIR and LLITG are interactive in nature and
begin with a series of gueries which must be responded
to by the user in order to proceed with the program.
Pages 78 and 79 give the queries and the answers as used
in the example in this appendix. Pages 80 and 81 give
additional explanation regarding the information
required in response to each of the queries. With this
report, the example in the appendix and a listing of the
programs the reader should be able to assemble a set of
programs for the double integration of time series data.
Program listings will be provided on request.
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(1) PROGRAM IIR

RUN IIR

l. ENTER OUTPUT FILTER COEFFICIENT FILE NAME
?FILTER.DAT

2. ENTER ORDER OF THE FILTER(EVEN #)
?8

3. ENTER 0 FOR LOW AND HIGH PASS FILTER
OR ENTER 1 FOR BAND PASS AND REJECT FILTER
20

4, ENTER PASS BAND RIPPLE ATTENUATION W.R.T. 1

20.01
5. ENTER SAMPLING FREQUENCY IN HZ
30 HZ FOR CASTINE EXPERIMENT
230
6. FOR LOWPASS : ENTER 0

FOR HIGHPASS
FOR BANDPASS
FOR BANDSTOP
?22.0

ENTER PASSBAND FREQUENCY IN HZ
ENTER FIRST PASSBAND FREQ IN HZ
ENTER SECOND PASSBAND FREQ IN HZ

ENTER PASSBAND FREQ IN HZ
ENTER SAMPLING FREQ IN HZ
ENTER SECOND PASSBAND FREQ IN HZ
ENTER FIRST PASSBAND FREQ IN HZ

7. FOR LOWPASS
FOR HIGHPASS
FOR BANDPASS
FOR BANDSTOP
230

*e

8. FOR LOWPASS OR HIGHPASS: ENTER POSITIVE STOPBAND FREQ

OR ENTER NEGATIVE STOPBAND RIPPLE IN DB
Kkkhkkhkkhhkkhkkkhdhk
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FOR BANDPASS AND STOP : ENTER NEGATIVE STOPBAND RIPPLE IN DB
?21.7 '

(2) PROGRAM LLITG
RUN LLITG

1. ENTER FILTER COEFFICIENTS FILE NAME
?FILTER.DAT

2. ENTER # OF DATA POINTS
21024

3. ENTER SAMPLING FREQ (SAMPLES/SEC)
230

4. ENTER RAW DATA FILE NAME (BINARY DATA)
?C8031.RO3

5. ENTER OUTPUT DISPLACEMENT FILE NAME (BINARY DATA)
2C8031.D03
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Description of the Program Input/Output Requirements

PROGRAM IIR:

l'

FILTER.DAT is the output ASCII data file contaiing

- filter coefficients which is the input file to program
LLITG.

Order of the filter which is discussed in Appendix 1-(4)
in this example 8. |

Choose correct one ~ 0 in this example for highpass
filter.

e.g., for highpass filter in Figure 12, is the
passband ripple expressed as a decimal fraction'less
than 1.0 -0.01 in this example.

Sampling frequency in Hz = number of samples per second
- 30 Hz in this example.

In the example for a highpass filter as in Figure 12,
is the passband frequency, 2.0 Hz.

In this example for a highpass filter we enter 30 Hz;
the sampling frequency.

For lowpass or highpass filter:

either enter stop-band frequency as a positive number
in Hz or _
enter stop-band ripple as a negative number in dB.

For band-pass or band-stop filter:

 enter stop-band ripple  as a negative number in dB.

In this example of highpass filter, we enter stop-band
frequency +1.7 Hz.

PROGRAM LLITG:

l.

Enter name of output file from program IRR which
contains the filter coefficients - FILTER.DAT in this
example.

Number of data points in the acceleration time histdry -



1024 in this example.
3. Sampling frequency in Hz - 30 Hz in this example.
4, C8031L.RO3 is an example input acceleration BINARY data

file name.

5. C8031.D03 is an example output displacement BINARY data
file name.

The displacement figures shown in this thesis were
obtained from double integration of 1500 (50 sec)
acceleration data points. Because of the transient effect of
the filters (also integrators) on the beginning and ending
parts of the data, 238 data points were discarded on both
ends and a total of 1024 (34.14 sec) displacement data points
were shown in those figures.

Program LLITG can integrate at most 2048 data points.
.For the 2 1/2 hour long records, as shown in Figures 25 »
through 28, modification of this program was required. The
program was broken into individual steps as described in
Chapter 3, section 5. In each step, the data was processed
segment by segment. Because of the transient effec.: in the
filters (also integrators), each segment was not processed
independently of the next segment Careful linkage between
segments was done by storing the ending of the previous
segment, and using it as the beginning of the next segment,

so that transients were eliminated in moving from one segment
to the next.
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